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ABSTRACT This paper presents a simple and reasonable method for generating a phenomenological model of the internal
mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary
beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and
fit to a simple functional form called the “engine.” This engine is incorporated into a recently developed hydrodynamic model
that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The
model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are
two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown
to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased
viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia.
We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat
periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various
multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling
evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due
to hydrodynamic interactions between neighboring cilia.

INTRODUCTION

This paper deals with modeling the internal forces that
produce ciliary motion, the changes of ciliary beats in
response to changes in the viscosity of the surrounding
fluid, and the investigation of cilia interactions. We are
particularly interested in the formation of metachronal
waves, phenomena which have attracted a great deal of
research effort both experimentally and theoretically.

Metachronal coordination between cilia is a situation
where cilia beat together with a constant phase difference
between adjacent neighbors and their tips form a moving
wave pattern. Metachronal waves appear in various forms,
depending on the direction of the wave propagation. Sym-
plectic metachronism is the case where the wave propagates
in the direction of the effective stroke [for example, the cilia
of Opalina (Sleigh, 1962)]. When the wave propagates in a
direction opposite to that of the effective stroke, the meta-
chronism is called antiplectic. Diaplectic metachronism is
the case where the direction of the metachronal wave is
perpendicular to the direction of the effective stroke. In
some cases cilia can change the type of their metachronism
in response to changes in the environment, such as changed
fluid viscosity, as observed with the cilia ofParameciumby
Machemer (1972). The reason why and how arrays of cilia
beat in a metachronal pattern is not fully understood. The
work of Machemer (1972), for example, shows that mem-

brane voltage and calcium levels affect the direction of the
metachronal wave as well as the directions of the effective
and the recovery strokes of the cilia. On the other hand,
some researchers have speculated that metachronism may
result from hydrodynamical coupling (e.g., Sleigh, 1974;
Gheber and Priel, 1989). The work we present here provides
a theoretical model that partially supports this conjecture.

The motion of cilia and flagella is governed by the Stokes
equations with no-slip boundary conditions on their surfaces
and vanishing fluid disturbance at infinity. The slenderness
of cilia/flagella justifies certain asymptotic approximations
used to relate the local drag forces to the local velocity. This
approach, which was pioneered by Gray and Hancock
(1955) (referred to as G-H hereafter), assumes that the
tangential, normal, and binormal components of the drag
force are proportional to the respective components of the
velocity, with different proportionality constants. The G-H
approximation has been used extensively in many models
because of its simple implementation. However, it has se-
vere limitations [see, e.g., Lighthill (1975, 1976) and Chil-
dress (1981)]. Modifications of the drag coefficients, known
as resistive force theories (RFT), were tried as an attempt to
overcome these problems (Lighthill, 1975; Brennen and
Winet, 1977; Johnson and Brokaw, 1979). Unfortunately,
the RFT was not accurate enough, for example in the case
of the flagellum with an attached cell body (Johnson and
Brokaw, 1979). Furthermore, even if one could somehow
obtain resistance coefficients that are accurate for modeling
the motion of a single cilium, there is no justification for its
use in cases where the cilium moves in external flows, since
these coefficients depend on such flows. Also, there is no
reason to believe that they would remain constant along the
cilium at all times under such conditions. Thus, RFT is not
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applicable for modeling multicilia configurations. A more
consistent method to relate the drag forces and the velocity
through a vectorial integral equation for the drag forces was
suggested by Lighthill (1976) and proved by Childress
(1981). Lighthill’s equation is an integral equation of the
first kind with respect to its tangential component and is
therefore ill-posed. In addition, its integrand is singular and
the integration interval contains points that are close to the
singularity. This introduces severe problems in any attempt
at a numerical solution. Other hydrodynamic analyses, gen-
erally referred to as slender body theory, have been devel-
oped and refined by many authors. They were applied to
various problems involving flagellar motion, offering dif-
ferent methods to relate between the drag forces and the
velocities (Johnson and Brokaw, 1979; Dresdner et al.,
1980; Higdon, 1979a–c; Phan-Thien et al., 1987; Myer-
scough and Swan, 1989; Ramia, 1991). In a recent publi-
cation, Gueron and Liron (1992) (GL hereafter) presented a
method that overcomes the above difficulties. They intro-
duced a variation on Lighthill’s equation that yields a well-
posed integral equation of the second kind for the normal,
tangential, and binormal drag forces, thus keeping the inte-
gration interval away from the singularity. This improved
the accuracy and consistency of the model for cilia beating.
More important, the GL equations are the first published
method for dynamical simulations of multicilia configura-
tions that account for the effects of neighboring cilia and the
effect of the surface from which the cilia emerge. This
model was originally applied to a two-dimensional setup
and later extended to describe three-dimensional beating
(Gueron and Liron, 1993).

Modeling the internal mechanism of cilia is a very chal-
lenging problem, and no satisfactory model has been devel-
oped so far. We review here briefly some of the previous
modeling attempts, discussing the involved difficulties.

The work of GL was mainly oriented toward developing
a framework that facilitates dynamical modeling of multi-
cilia configurations. To describe the internal mechanism of
the cilia (hereafter referred to as the “engine”) phenomeno-
logically, they used an ad-hoc equation that represented the
active normal shear force generated inside a cilium. The GL
engine included a built-in frequency term that controlled the
resulting beat frequency and predetermined the duration of
the effective and the recovery strokes. Therefore, this model
engine does not allow for realistic changes in the beat
frequency in response to changed external load such as
increased viscosity or external flow generated by neighbor-
ing cilia. This is also the reason why it is not appropriate for
investigating metachronism. In the GL modeling framework
the engine part is kept as a separate building block, which
can be readily replaced by a more realistic version, as we
demonstrate in this paper.

Experiments show that when flagella are pinned at one
end to a flat surface they tend to change their beat pattern
from a symmetric cycle (which is typical for flagella) to an
asymmetric beat pattern similar to that of cilia [see, for
example, Blum and Hines (1979)]. Inspired by these results

and the similarity between the internal structure of cilia and
flagella, Blum and Hines (1979) incorporated ciliary bound-
ary conditions into a model for the motion of flagella. Using
a curvature-controlled model (Hines and Blum, 1978) and a
self-oscillatory model (Hines and Blum, 1979) they found
that a 10-mm-long model cilium did not move at all with a
flagellar engine, while a longer model cilium moved with a
symmetric beat pattern similar to flagella. Thus, they could
not obtain a ciliary beat pattern by simply changing the
boundary conditions in a flagellar motion model. Obvi-
ously, some other factors are responsible for the asymmetric
patterns.

Excitable dynein models for the internal engine of cilia
and flagella were suggested in a series of papers by Murase
and Shimizu (1986), Murase et al. (1989), and Murase
(1990, 1991). These models assumed that dynein is nor-
mally at a resting position and is activated when the sliding
exceeds some threshold value. These models were tested
only under the assumption of small amplitude motion,
which is not the case for real cilia, and were based on the
G-H approximation that is not adequate for modeling mul-
ticilia configurations. Also, we found that Murase’s model
engine (Murase, 1990) gives poor results when incorporated
into the GL model.

In the present study we propose a consistent method for
calculating the internal forces that generate an observed
ciliary motion. To avoid the need for a detailed analysis of
the internal filaments, the dynein arms, radial spokes sys-
tem, and microtubules (see Brokaw, 1985), we model the
computed forces by a simple and plausible functional form.
The resulting engine represents merely a phenomenological
description. To obtain realistic values for the relatively
small number of parameters on which our model depends,
we use data from observed cilia and compute locations and
velocities during the beat cycle. We then solve the GL
equations and compute the drag forces, from which we
compute the internal shear forces. These forces are used to
determine the engine parameters. The transitions from the
effective to the recovery stroke and vice versa are modeled
by two switches that are controlled by the momentary
geometrical configuration. These configuration-dependent
switches implicitly reflect the load dependence of the inter-
nal engine without using an explicit frequency term in the
model engine.

The new engine is tested by incorporating it into the GL
dynamical equations for two-dimensional beats. The model
produces realistic beats. It also reproduces experimental
results such as logarithmic decrease in beat frequency with
increased viscosity, self-synchronization between two adja-
cent cilia, and frequency matching with the frequency of
external flows. Finally, we investigate multicilia configura-
tions and obtain dynamic self-synchronization between two
adjacent cilia, and phase lags that resemble antiplectic meta-
chronal patterns that evolve autonomously due to the hy-
drodynamical interaction between the cilia. A brief sum-
mary of a portion of this work, without any of the
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mathematical and computational details, is presented by
Gueron et al. (1997).

THE MODEL EQUATION OF MOTION

Notations

We adopt the notations used by GL and by Hines and Blum
(1978). The cilium is considered as an inextensible cylin-
drical filament of lengthL and radiusa, whose centerline is
a curve parameterized by its arclength parameter 0# s# L.
For the two-dimensional motion, the location of each point
[x(s, t), y(s, t)] along the cilium, at timet, is determined by
the anglea(s, t) between the tangent to the curve and a fixed
horizontal axis by the equations

x~s, t! 5 E
0

s

cos@a~j, t!#dj,

(1)

y~s, t! 5 E
0

s

sin@a~j, t!#dj.

The curvaturek 5 k(s, t) satisfiesk 5 as. We useF(s, t) to
denote the shear force developed by the internal mechanism
of the cilium andM (s, t) for the bending moment it pro-
duces.f(s, t) is the drag force per unit length, exerted on the
cilium by the surrounding fluid of viscositym.

The subscripts T and N denote the tangential and normal
components of vectors, respectively, and the subscripts s
and t denote partial differentiation with respect to the arc-
lengths and to timet, respectively. In general, all locations
and forces depend ont and s, but we avoid writing this
dependence explicitly whenever it is clear from the context.

Drag force-velocity relation and
geometric equations

The hydrodynamic description of cilia motion we use in this
work was developed by GL. The drag force-velocity rela-
tion is written as

fN 5 2CNVN 1 gN, fT 5 2CTVT 1 gT. (2)

where

gN 5 CNGN, gT 5 CTGT, (3)

andG 5 (GT, GN) is defined by

G~s0, t! 5 E
us2s0u.q

Us~r~s0, t!, r~s, t!, 2f~s, t!!ds

1E
0#s#L

$Vsi~r~s0, t!, r~s, t!, 2f~s, t!!

1Vdi~r~s0, t!, r~s, t!, 2~a2/4m!f~s, t!!%ds

1E
0#s#L

neighboring cilia

Us~r~s0, t!, r~s, t!, 2f~s, t!!ds,

(4)

CT 5
8pm

22 1 4 ln~2q/a!
, CN 5

8pm

1 1 2 ln~2q/a!
. (5)

Hereq can take any value such thatq/L ,, 1, a/q ,, 1. The
terms that appear as integrands in Eq. 4 are the appropriate
singular solutions of the Stokes equation (stokeslets and
doublets with and without the image system). Equation 4 is
an approximation to orderO(=a/L). It can generally be
used for 3-d motion, but is applied here to planar motions
(for more details see GL).

The balance of forces and moments and the equations that
relate the components of the velocity to the cilium’s geom-
etry (see Lubliner, 1973; Hines and Blum, 1978) are

fN 5 FNs 1 FTas, fT 5 FTs 2 FNas, Ms 5 FN, (6)

VNs 5 at 2 VTas, VTs 5 VNas. (7)

FN, the normal component of the shear force developed
within the cilium, is represented by

FN 5 Ebass1 S. (8)

The first term of Eq. 8 accounts for the elastic stiffness of
the cilium and the second term represents the internal en-
gine; that is, the active shear force generated inside the
cilium by the sliding filaments mechanism.

Using Eqs. 2, 6, and 7 and the normalized variabless* 5
s/L, t* 5 w0t, S* 5 S/S0 we obtain the following nondi-
mensional equations (written without the asterisks for con-
venience):

FTss 5 ~1 1 CTN!FNsas 1 CTNFT~as!
2

1 FNass2 CTNgNas 1 gTs,
(9)

FNss 1 ~1 1 CNT!FTsas 1 FTass

5 2~CNw0L
2/S0!at 1 CNTFN~as!

2 1 CNTgTas 1 gNs,
(10)

whereCTN [ CT/CN andCNT [ CN/CT, and 0# s # 1. For
brevity we defineC̄N 5 CNL2/S0. The values ofL, S0, and
w0 are displayed in Table 1. The nondimensional form of
Eq. 8 becomes

FN 5
Eb

S0L
2 z ass1 S. (11)

The motion of the cilium can be computed from Eqs.
9–11. If a model forS(s, t) is chosen, one can computeFN

from Eq. 11. Then,FT is determined from Eq. 9 anda(s, t)
can be propagated in time by means of Eq. 10. Fig. 1
represents the simulation algorithm for the numerical tech-
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niques used in the simulations and the complete details
schematically outlined in the Appendix.

Boundary and initial conditions

Here we use boundary conditions appropriate for cilia that
are stiff at the base (Blum and Hines, 1979; Murase, 1992),
namely

as~0, t! 5 0. (12)

We assume here vanishing drag force ats 5 0 as an
approximation motivated by the small amplitude motion
nears 5 0:

FTs~0, t! 5 FNs~0, t! 5 0. (13)

Using Eq. 11 ats 5 0 and Eq. 13, we obtain

asss~0, t! 5 2
S0L

2

Eb
Ss~0, t!. (14)

Forces and moments vanish ats 5 1, and hence

FN~1, t! 5 FT~1, t! 5 0, (15)

which yields

ass~1, t! 5 2
S0L

2

Eb
S~1, t!. (16)

To complete the choice of the boundary conditions we
choose

as~1, t! 5 0, (17)

which implies that the distal end of the cilium is straight.
We use the initial conditions

a~s, 0! 5
p

2
, (18)

implying that the cilium stands erect at timet 5 0.

RECONSTRUCTION OF THE ACTIVE SHEAR
FORCE FROM DATA

In this section we describe a general framework for com-
puting and modeling the active shear force (engine) gener-
ated by the internal mechanism of the cilia and demonstrate
its implementation with specific data. We separate the beat
cycle into four distinct phases that occur in the following
order. Phase 1: The effective stroke where the cilium beats
approximately as a straight rod. Phase 2: A geometrically
controlled switch from the effective to the recovery stroke,
initiating a change in the direction of the motion and a bend
at the basal end. Phase 3: The recovery stroke where the
bend propagates along the cilium until it becomes straight
again. Phase 4: A second geometrically controlled switch
from the recovery to the effective stroke, initiating a new
effective stroke.

We thus construct two different simple models for the
forward (effective) and backward (recovery) motions,
where the transitions from one to the other occur due to
switches (see Satir, 1985) activated by the momentary geo-
metric configuration of the cilium. The rationale for using
two different models is that observations show completely

TABLE 1 Parameter values for the ciliary motion model

Parameter Value Reference

L 12 mm The length of the cilium ofParamecium(Sleigh, 1962)
a 0.1 mm Typical cilia radius (Sleigh, 1962)
q 1 mm Gueron and Liron, 1992
w0 28 beats/s Typical beat frequency ofParamecium(Sleigh, 1962)
S0 10212 N Gueron and Liron, 1992
Eb 25 z 10224 N/m2 Gueron and Liron, 1992
m 0.001 kg/(mz s) The viscosity of water (at 20°C) (Gueron and Liron, 1992)

FIGURE 1 A schematic representation of the simulation algorithm.
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different behavior during the effective and recovery strokes,
and there is some evidence that these phases are related to
different connections among the nine filaments (Sleigh and
Barlow, 1982; Satir, 1985). Configuration-dependent
switches are a reasonable modeling assumption that attempt
to reflect the load dependence of the internal engine. These
are motivated by the fact that observed beat frequencies
change in response to external load.

The exact details of the motion of a single cilium are
difficult to separate since experiments always describe the
motion of an ensemble of cilia. Therefore, it is difficult to
determine whether the modeling principles we propose
here, or their implementation, apply in general. In the
present study we consider cilia that beat in a two-dimen-
sional pattern for which both the effective and the recovery
strokes occur at a plane perpendicular to the surface from
which the cilia emerge. For data we use the cilium of
Paramecium, whose beat pattern is close to being two-
dimensional (Sleigh, 1962). We use these observed beat
patterns to compute locations and velocities at various times
during the beat cycle. Then we calculate the forces that are
responsible for the observed motion and fit to a simple
functional form that represents the model engine. We do not
attempt to account here for the specific details of how these
forces are generated and controlled by internal structure of
the cilium. Nevertheless, it is known that the internal shear
forces arise from the dynein cross-bridges and from the
radial spokes and nexin links systems (Sleigh and Barlow,
1982). It is thus convenient to follow Hines and Blum
(1978) and to consider these two systems separately, and to
write

S~s, t! 5 Sd~s, t! 1 Sr~s, t!, (19)

whereSd andSr represent the shear forces due to the dynein
cross-bridges and to the radial spokes/nexin links systems,
respectively.

The implementation of our proposed modeling approach
to a specific case is based on the available data on the
observed beats. While the forces that generate the motion
are quite accurately reconstructed, there are more than one
option to model their control, in particular how the model
engine responds to external load. Our modeling assumption
is that the load dependence is reflected only through the
geometric switches; that is, the internal mechanism does not
change its properties due to load. A different approach that
would produce a different, perhaps even more realistic
model of the internal ciliary mechanism would be to include
the property that dyneins generate more forces when slowed
down by load. This would actually replace our configura-
tion-dependent engine with a speed-dependent one. Without
actual quantitative data, this approach must involve another
modeling assumption. One example is Brokaw (1985) who
included this property without going into details of the
internal structure. His approach can also be explored within
our modeling framework.

The effective stroke

During the effective stroke the cilium moves approximately
as a straight rod. If the angular velocity is denoted byveff,
the tangential and the normal components of the velocity are

VT 5 0, VN 5 2veffs, (20)

and the drag-velocity equations (Eq. 2) reduce to:

fN 5 C# Nveffs1 gN, (21)

fT 5 gT. (22)

Substituting Eq. 21 into Eq. 6, and usingas 5 0, yields

FNs 5 C# Nveffs1 gN. (23)

The distal end of the cilium is free, and thus the shear forces
vanish ats 5 1. We integrate Eq. 23 with respect tos and
obtain

FN~s, t! 5 C# Nveff

~s2 2 1!

2
1 f ~s, a~t!!, (24)

where

f ~s, a~t!! 5 2E
s

1

gN~j, t!dj. (25)

Since the cilium is straight, the elastic forces vanish and Eq.
11 gives:

S~s, t! 5 FN~s, t!

5 C# Nveff z
~s2 2 1!

2
1 f ~s, a~t!!.

(26)

To compute the active shear force,S(s, t), we solve the
integral equations (Eq. 2) forfN andfT, and then solve Eq.
6 for FN andFT.

Fig. 2 a displays the calculated active shear force,S, for
different positions during the effective stroke, and panelb
displaysf [s, a(t)], which is calculated at these inclination
angles. As shown in panelb the computed functionf [s, a(t)]
behaves roughly likeC z [(s2 2 1)/2], with an angle-
dependent constantC 5 C[a(t)]. Note that if we use the
G-H approximation instead of the more accurate GL hydro-
dynamics, the active shear force turns out to be angle-
independent, which gives a less realistic description of the
engine. We model the functionf [s, a(t)] by

f~s, a~t!! 5 C# Nveff z h~a~t!! z
~s2 2 1!

2
, (27)

whereh(a) represents the angle dependence. From the ex-
pression forgN it follows that f(s, a) is symmetric about
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a 5 p/2, and we thus fith(a) by

h~a! 5 A1 1 A2 z Sa 2
p

2D
2

. (28)

Fig. 2 c shows the graph ofh(a) versusa, as obtained
from these calculations, and the fitted function defined by
Eq. 28.A1 andA2 are computed by a minimum least-squares
fit, which yieldsA1 5 0.26 andA2 5 20.17. Evidently, this
simple procedure produces a relatively good fit.

Finally, the shear force during the effective stroke is
modeled by

S5 C# Nveff z
~s2 2 1!

2
z F1 1 A1 1 A2 z Sa 2

p

2D
2G. (29)

Note that C# N and veff appear only as the combination
C# Nveff. We use the two parameters separately in order to
leave a frequency term (veff) and for consistency with the
GL equations. The values we use forveff andC# N are based
on the data, as detailed in the next section.

According to Sleigh and Barlow (1982) the radial spokes
are attached to the central complex along the bent region but
are not connected along the straight regions. Since during
the effective stroke the cilium is almost straight, the contri-
bution from the radial spokes system (Sreff

) may be ignored.
Thus, active shear force during the effective stroke (Seff) is
modeled by

Seff 5 Sdeff 1 Sreff 5 C# Nveff z
~s2 2 1!

2
z @1 1 h~a!#. (30)

The recovery stroke

Data handling for computing the velocities during the
recovery stroke

Calculation of the active shear force during the recovery
stroke is more complicated than during the effective stroke
because the angular velocity of the cilium varies withs. To
determine the velocities during the recovery stroke, we use
the beat cycle diagrams shown by Sleigh (1962, 1968) as
data. We fixN points, equally spaced byds5 1/N arclength
apart, along the cilium at all positions during the observed
recovery stroke, and measurex 5 x(s, t) andy 5 y(s, t) at
these grid points. The number of positions, separated by
fixed time intervalsdt, is K 1 1. We end up withK 1 1 sets
of coordinates [x(ids, jdt), y(ids, jdt)] 5 (xi

(j), yi
(j)), 0 # i #

N, 0 # j # K. To suppress measurement errors we smooth
the manually measured data and fita(s) by the sigmoidal
functionA/[1 1 exp(B z s 2 C)] 1 D as shown in Fig. 3b.
The reconstructed recovery stroke is displayed in Fig. 3a.
Finally, the (x, y)-components of the velocity at these points
are approximated by a central difference.

Blake (1972) and Liron and Mochon (1976) tackled a
similar reconstruction problem. They used Fourier time
series for describing the coordinates of the moving cilium,
computing the coefficients from the observed data. Since
our typical data represent a relatively small number of
positions during the beat, only a few terms can be included
in such Fourier series, and then the related derivatives
would not approximate the cilium’s velocity well. We there-
fore prefer the central difference approximation, described
above.

Calculation of the active shear force

Using the fitted velocity we solve the integral equations (Eq.
2) for the drag forcesfT andfN. Equation 6 are then solved

FIGURE 2 (a) The computed active shear forceS during the effective
stroke, for different values of the inclination anglea. (b) The function
f[s, a(t)] 5 2*s

1 gN(j, t)dj computed during the effective stroke for the
same values ofa as in (a) (see explanation in the text). (c) h(a) as a
function of a during the effective stroke. The solid line represents calcu-
lation results, the dashed line is the fitted curveh(a) 5 A1 1 A2 z (a 2
p/2)2 (with A1 5 0.26 andA2 5 20.17). The units of the horizontal and the
vertical axes in (a) and (b) are nondimensional length and nondimensional
force, respectively. The horizontal axis in (c) measures the inclination
anglea in radians.
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for FN andFT, and the active shear force generated inside
the cilium (S) is obtained from Eq. 11.

Fig. 3 c displays the calculated shear force as a function
of sat different time steps during the recovery stroke. These
are the same time steps as in paneld, where the curvature of
the cilium is plotted. The peak observed in these curves can
be interpreted by the following argument: when the bend is
at s 5 sb, the region 0# s # sb has already reached its
leftmost, almost straight, position (see Fig. 3a). Therefore,
the force required to maintain it fixed is approximately
constant. A stronger force is required to overcome the
elastic bending resistance near the regions ; sb and to
propagate the bend toward the distal end of the cilium.

Recall that we construct the engine as the sum of the
forces due to the dynein cross-bridges and to the radial
spokes/nexins (see Eq. 19). A reasonable and straightfor-
ward indicator of the location of the bend is the curvature of
the cilium. Indeed, the peak of the active shear force ob-
tained by our calculations is located at the place of maximal
curvature of the cilium (compare panelsc andd of Fig. 3).
Thus, we model the contribution of the radial spokes to the
active shear force (Srrec

) by a simple function of the curva-
ture, namely

Srrec~s, t! 5 Brec z as~s, t!, (31)

whereBrec is a parameter to be computed by fit to the data.

Similarly to the effective stroke case, we model the forces
due to the dynein cross-bridges (Sdrec

) by a parabolic function:

Sdrec~s, t! 5 C# Nvrec z
~1 2 s2!

2
z @1 1 hrec~a!#, (32)

where vrec is the typical velocity of the recovery stroke
(e.g., the velocity of bend propagation along the cilium) and
hrec(a) is a function of the form (Eq. 28). Sleigh and Barlow
(1982) reported that the dynein cross-bridges work synchro-
nously along the cilium during the effective stroke. They
assumed that at the beginning of the recovery stroke the
dynein arms work only at the basal region, thus initiating the
bend. We adopt this assumption and model the dynein arms
activity by using the following form forhrec(s, t):

hrec~s, t! 5 5
1 1 A1 1 A2 z Sa~0, t! 2

p

2D
2

,

0 # s# 0.1 and a~0, t! , aL

A1 1 A2 z Sa~0, t! 2
p

2D
2

,

0.1, s# 1 or a~0, t! . aL

(33)

Here,aL is the inclination angle of the cilium at its leftmost
position, just before the beginning of the effective stroke.
The values ofA1 andA2 are determined by fit to data.

FIGURE 3 (a) Five positions during the recovery stroke, reconstructed from the diagrams of the beat cycle ofParamecium[Sleigh (1962); (see
explanation in the text)]. (b) The curvaturea as function ofs at the five positions during the recovery stroke. The diamond symbols shown with one of
the curves display the measured values for corresponding time step. The curves are results of smoothing by sigmoidal functions (see explanation in the text).
(c) The calculated shear force along the cilium at three times during the recovery stroke. (d) as as function ofs during the recovery stroke at the same time
positions as in (c). The units of the horizontal axis in (a)–(d) are nondimensional length. The units of the vertical axis are (a) nondimensional length; in
(b) radians; (c) nondimensional force; (d) dimensionless curvature.
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Summary of the engine equations

We now assemble Eqs. 28, 30, 31, 32, and 33, and use the
fact that the curvature vanishes during the effective stroke,
which implies that no forces arise from the radial spokes
system (Sreff

5 0), to write the resulting expression for the
active shear force:

Seff/rec 5 S~s, t!

5 ~61! z HC# Nveff/rec z
~s2 2 1!

2
z @1 1 heff/rec~s, t!#

1 Beff/rec z k~s, t!J,
(34)

where the functionsheff(s, t) andhrec(s, t) are described by
Eqs. 28 and 33 for the effective and recovery strokes,
respectively.veff/rec are the typical velocities during the
effective and recovery strokes, respectively.Beff/rec is a
parameter controlling the relative magnitude of the contri-
bution of the radial spokes to the active shear force during
the effective and recovery strokes. The sign ofS(s, t) is
taken positive during the effective stroke and negative dur-
ing the recovery stroke.

Altogether five parameters control the effective stroke
[veff, aR, Beff, and set (A1, A2)] and five parameters [vrec,
aL, Brec, and set (A1, A2)] control the recovery stroke.veff,
vrec, aR, and aL are measured directly from the data and
Beff, Brec, and the two sets (A1, A2) are obtained by fit to this
data. The choice of parameters is detailed in the next sec-
tion.

Switching

To complete the description of the engine it is necessary to
determine when the switching between the two phases of
the beat occurs. Ifs(s) denotes the effective shear (i.e., the
effective amount of sliding), then the inextensibility of the
filaments implies

a~s! 5 s~s! 1 @a~0! 2 s~0!# (35)

[note that the effective shear is a geometric quantity, not to
be confused with the active shear force. For details see
Hines and Blum (1978)]. In our model we assume that
switching occurs when further sliding is no longer possible,
and then sliding in the opposite direction begins. Thus, the
maximal effective displacement (s) is achieved at the
switching moment. This leftmost (or rightmost) position,
corresponds, according to Eq. 35, to an inclination angle
denotedaL (aR). Consequently, switching between the ef-
fective and the recovery strokes occurs when the cilium
reaches its rightmost inclination. During the recovery stroke
the cilium straightens until it reaches its leftmost early
straight position. In our model, switching between the re-
covery and the effective strokes occurs wheniki` , e (we
usede 5 1024).

NUMERICAL METHODS AND THE
CHOICE OF PARAMETERS

The parameters we use in the model are listed in Table 1.
With these parameter values the modified resistance coef-
ficients for cilia beating in water are:

CT 5 0.0025175
kg

m z s
, CN 5 0.0035947

kg

m z s
.

Note that the values of these coefficients are different from
the values used with the G-H model. Particularly, the ratio
CN/CT is 1.43, which is much lower than the value of 2 used
in the G-H model and also lower than the value of 1.8
measured (roughly) for a flagellum by Brokaw (1972).

For modeling the active shear force function we use the
following nondimensional parameters:

veff 5 393 the average angular velocity of the cilium
of Parameciumduring the effective stroke
(expressed in nondimensional units, and
equivalent to 11000 °/s). Sleigh (1962).

vrec 5 82 the average velocity of bend propagation
during the recovery stroke (expressed in
nondimensional units, and equivalent to
2292 °/s). Sleigh (1962).

The parameters defining the functionsh(a) as in Eqs. 28 and
33 are fit to the data:

A1 A2

during the effective stroke 0.262 0.17
during the recovery stroke 1 2 2

The parametersBeff/rec (see Eq. 34) are:

Beff 5 0, Brec 5 2.

We used finite difference schemes and iterative tech-
niques to solve the differential and integral equations. The
time step for the numerical schemes wasdt 5 0.1 ms (0.28
in nondimensional time). The nondimensional spatial step is
ds5 1/30 (i.e., 31 discretization points on each cilium). We
verified that the results do not change significantly if the
number of the discretization points is increased or if the
time step is decreased.

To facilitate the reproduction of our method, the details of
all the computational procedures used in the numerical
calculations are outlined in the Appendix.

RESULTS

Results for a single cilium

Fig. 4 a displays the beat cycle of a model cilium with the
engine described by Eq. 34 and the parameter values de-
scribed in the previous section. The beat duration (translated
back to dimensional units) is'34 ms, corresponding to a
beat frequencyw ' 29 Hz. For comparison, the beat dura-
tion and frequency of the cilia ofParameciumwhich we
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used as data for the modeling process, are 35 ms andw 5
28 Hz, respectively (see Sleigh, 1962, 1968). The duration
of the effective and the recovery strokes of the model cilium
are'8–9 ms and'25–26 ms, respectively. The duration of
the effective stroke is approximately one-third of the dura-
tion of the recovery stroke for both the real and the model
cilium.

During the recovery stroke, the basal region (;10% of
the cilium) moves quickly from its rightmost position (the
position of the beginning of the recovery stroke) to its
leftmost position (the position of the beginning of the ef-
fective stroke) and remains there until the cilium straightens
(see Sleigh, 1962, 1968). This also happens with the model
cilium. Note also that a realistic forward bend in the cilium
is formed during the effective stroke, although originally the
cilium was considered as a straight rod during this phase.
The autonomous formation of this bend is due to the fit
approximation used when modelingS (and additionally
because after a few cycles, the cilium does not start its
effective stroke from a perfectly straight position). We point
out that if the boundary conditionas(0, t) 5 0 (for a cilium
stiff at the base) is replaced witha(0, t) 5 p/2 (for con-
stantly erect cilium at the anchor), the bend formed during
the effective stroke is in the opposite direction, unlike
observed beats. The duration of the swing of the basal
region during the recovery stroke is'8 ms, and the basal

region remains at its leftmost position for;75% of the beat
cycle. The angular range of the effective stroke is'110°–
115° for both the real and the model cilium. These features
of the model beat cycle fit the data very well, although the
actual beat pattern of the model cilium (Fig. 4a) is a bit
different from that of the observed cilium (Fig. 3a). This
difference is probably the result of the fit approximations,
numerical and measurement errors, and the uncertainty of
what happens at the beginning of recovery stroke. In addi-
tion, the observed cilium presented by Sleigh (1962) is one
cilium within a multicilia configuration, and therefore the
interaction between an unknown number of neighboring
cilia is already included in the data. Nevertheless, the model
beat cycle possesses the typical features of the beat. Table 2
compares some properties of the cilium ofParamecium
with those obtained from the model, demonstrating a good
fit to the data.

The effects of increased viscosity

Machemer (1972) investigated the effects of increased vis-
cosity on the cilia ofParamecium, particularly the effects on
the beat frequency. He reported that beat frequency de-
creases exponentially with increasing viscosity.

Fig. 4,a–cdisplays the beat patterns of the model cilium
at three different viscosities. With increased external load

FIGURE 4 Beat cycles of model cilia. All positions are equally separated in time by 3 ms. The effective stroke positions are plotted by dashed lines and
the recovery stroke positions by solid lines. The units of the axes are nondimensional length. (a) A single cilium. The viscosity of the surrounding fluid
is that of water (m 5 mwater). The resulting beat frequency is'29 Hz. (b) m 5 2mwater. The resulting beat frequency is'15 Hz and the beat pattern is
changed. (c) m 5 3mwater. The resulting beat frequency is'10 Hz and the beat pattern is further changed. (d) Side view of an infinite line of synchronized
cilia, spaced by 0.3 ciliary length, beating in water. The resulting beat frequency is'29 Hz. Note the different angular spread during the beat as compared
to the single cilium in (a).
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the cilium changes its beat pattern; the bend at the beginning
of the recovery stroke becomes deeper and the beat duration
lengthens. However, the ratio between the durations of the
effective and the recovery strokes changes only slightly
(roughly 1:3). This reflects the fact that our model engine
does not change with increased load. We conclude that
during the effective stroke the engine is strong enough to
overcome viscous resistance in this range, but with in-
creased external load it becomes more difficult to propagate
the bend along the cilium. Fig. 5 compares the dependence
of the beat frequency on viscosity of the model cilium with
Machemer’s data (Machemer, 1972). The model beat fre-
quency decreases roughly linearly when plotted against the
logarithm of the viscosity in the regionmwater # m # 5
mwater, as reported by Machemer. This feature wasnot
explicitly assumed in the model and thus demonstrates that
our model captures this important property of the ciliary

motion. We also mention that the case of an isolated cilium
we discuss here is a hypothetical one. In reality there are
always neighboring cilia, and the beat frequency is also
affected by the external flow that is induced by the neigh-
boring cilia. Machemer’s observations were made with a
real multicilia configuration (not specified). This can ex-
plain the difference between the slope of the model results
and the real data. However, note that the beat frequency of
the model cilia tends to approach that of the real data as we
simulate a row of several adjacent cilia.

Machemer investigated the behavior of cilia when the
fluid viscosity was increased by as much as 40 times that of
water. He found that with increased viscosity (above 5
mwater) Parameciumchanges the plane of beating. Since our
model does not include this possibility, we examined the
effects of increased viscosity only in the range [mwater, 5
mwater].

We also examined the effects of changed viscosity on the
beat frequency of an infinite line of cilia spaced parallel to
one another (see below for details). The dependence of the
beat frequency turned out to be similar to that for an isolated
cilium (see Table 3), but at each viscosity the beat frequency
of the cilia in the infinite line of cilia was somewhat higher
than the frequency of a single cilium at that viscosity.

The effect of external flows

To further examine the load dependence of the model en-
gine we studied the influence of external flow on the result-
ing beat frequency. We used a parallel flow satisfying
no-slip conditions on the surface, and with linearly growing
amplitude: (Vx, Vy) 5 (K0 z y, 0), whereK0 is a constant
(possibly time-dependent). Nondimensional flow of magni-
tudeK0 corresponds to 3.36z 1024 z K0 m/s with the present
choice of parameters. Three different cases were tested: 1)
flow in the direction of the effective stroke; 2) flow in the
direction of the recovery stroke; 3) periodic flow.

Fig. 6, a–c displays the ciliary beat cycles when the
external flow is in the direction of the effective stroke.
IncreasingK0 shortens the effective stroke and the whole
beat pattern (stopping positions, angular range, duration of
the effective and recovery strokes) changes. During the
recovery stroke the cilium experiences stronger resistance
due to the external flow, and the resulting recovery stroke
takes longer. As the flow in this direction becomes stronger,

TABLE 2 Comparison between the properties of model
beats and observed ciliary beats of Paramecium

Parameter Dimensions
Data

(Sleigh, 1962) Model

Beat duration ms 35.7 '34
Beat frequency cycles/s 28 '29.5
Angular range of the

effective stroke
degrees 110 110–115

Duration of the
effective stroke

ms '9 '8

Duration of the
recovery stroke

ms '26 '26

Ratio of durations
(recovery/effective)

2.9 3.25

Duration of the basal
swing during the
recovery stroke

ms 6 '7

FIGURE 5 Dependence of beat frequency on viscosity in the range
mwater# m # 5mwater. Diamonds ({), triangles (‚), and asterisks (p) are the
modeling results for a single cilium and for five adjacent cilia separated by
0.6 and 0.3 ciliary length, respectively, with the errors indicated as vertical
bars. The lines (— —,z z z z z, and – – –) are the least-squares linear fit to the
computed values. The uppermost line (—z — z —) shows the fit (in the
rangemwater # m # 5mwater) to the experimental results (h) obtained for
Parameciumby Machemer (1972). The abscissa is on a logarithmic scale.

TABLE 3 The combined effect of cilia interactions and
increased viscosity

Viscosity
Single
Cilium

Two Cilia
Configuration

Five Cilia
Configuration

One
Infinite Line

mwater 29 Hz 31 Hz 33 Hz 32 Hz
2mwater 17 Hz 19 Hz 20 Hz 20 Hz
3mwater 12 Hz 13 Hz 13 Hz 14 Hz

Comparison of the beat frequency for three different values of viscosity
and for four configurations. The spacing between adjacent cilia is 0.6 in all
multicilia configurations.
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one can see that the resistance changes the final position at
the end of the recovery stroke.

Fig. 6 d–f displays the ciliary beat cycles when the
external flow is in the direction of the recovery stroke. Such
flow poses more resistance to the cilium during its effective
stroke. The duration of the effective stroke lengthens with
increased flow amplitude, and the beat pattern changes.
Table 4 summarizes some of the results obtained with these
flows.

The periodic external flow tested was (Vx, Vy) 5
[K0sin(2pwt)y, 0] in the range 0.5w0 # w # 2w0 (that is
from half the frequency of a beating cilium to twice that
frequency), and for 1# K0 # 15. We found that the beat
frequency of the model cilium approximates the frequency
of the external flow. This is consistent with the experimental
evidence reported by Okuno and Hiramoto (1976), who
reported that starfish sperm flagella synchronize their beat

frequency to that of a nearby vibrating microneedle, and
also with the results of similar experiments by Eshel and
Gibbons (1989) on sea urchin sperm flagella.

FIGURE 6 Beat cycles of a single cilium showing the effects of external flows. All positions are equally separated in time by 3 ms. (a)–(c) the external
flow is in the direction of the effective stroke. (Vx, Vy) 5 (K0 z y, 0), whereK0 5 1, 2, 3, respectively. (d)–(f) the external flow is in the direction of the
recovery stroke. (Vx, Vy) 5 (K0 z y, 0), whereK0 5 21,22,23, respectively. The units of the horizontal and vertical axes are nondimensional cilium length.
Beat patterns, angular spread, and beat frequency change due to the external flow.

TABLE 4 The effect of external flow on beat frequency

Velocity
(Vx, Vy)*

Beat Duration
(ms)

Beat Frequency
(beats/s)

Eff. Stroke
Duration

(ms)

(1 z y, 0) 34.5 29 6
(2 z y, 0) 35.5 28 5.5
(3 z y, 0) 38 26 4
(21 z y, 0) 37 27 8
(22 z y, 0) 42 24 9
(23 z y, 0) 40 25 11

*Positive and negativeVx components represent flows in the direction of
the effective and the recovery strokes, respectively.
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Two-cilia configuration

Our model results indicate that when two cilia are spaced by
more than two cilia lengths, their influence on each other
becomes negligible. Fig. 7 shows (on a logarithmic scale)
the ratio of the beat frequency of a two-cilia configuration to
that of a single cilium as a function of the distance between
the two cilia. We see that cilia that beat close to each other
tend to beat faster. For example, if the distance between the
cilia decreases from 2 to 0.3, the beat frequency rises from
'29 Hz (the beat frequency of a single cilium) to'40 Hz.
The dashed line in Fig. 7 is the least-squares fit to the
functionA z xB, and the extrapolation of this fitted line back
to the distance 0.02 predicts a beat frequency of'53 Hz.
Since the radius of our model cilia isa 5 0.01 (see Table 1)
this distance represents two touching cilia. To test the pre-
diction, we modeled a (very) roughly equivalent isolated
cilium having the same cross-section area (i.e., with radius
=2a), and beating in a fluid with viscosity 1/2mwater. The
match is quite satisfactory as we found that the beat fre-
quency of such a cilium is'45.5 Hz (we cannot expect a
better match with such a crude approximation).

Gray (1928) reported on experiments with two flagella
beating initially at different frequencies and phases. When
these flagella were put close enough to each other, they
tended to quickly synchronize and beat with the same fre-
quency and in phase. Machin (1963) considered the hypo-
thetical interaction between two adjacent flagella, each of
which beating initially in a small amplitude sinusoidal pat-
tern. Assuming that they continue to beat sinusoidally when
brought into close proximity and that each one experiences
a prefixed induced flow field, he obtained synchronization.

Our model, on the other hand, does not make any assump-
tions on the relation between the intrinsic beat pattern of the
two cilia and the pattern that emerges when they are close
together and subjected to the effects of their interaction. It
also includes realistic interaction, and we obtain synchroni-
zation as adynamicalprocess evolving quickly and auton-
omously from two cilia, initially completely out of phase. A
somewhat analogous phenomenon of self-synchronization
and phase locking between rings and lines of coupled os-
cillators is well known, and was investigated experimentally
and theoretically [e.g., for one-dimensional weakly coupled
chains and rings of oscillators, by Ermentrout and Kopell
(1984) and Ermentrout (1985)]. Here we have a complex
biological system demonstrating some predictions of this
theory. The evolution of self-synchronization of two model
cilia that are spaced one cilium length apart and start beating
completely out of phase is shown in Fig. 8. At the beginning
of the simulation (t 5 0 in the figure), the right cilium
begins at its effective stroke whereas the left one begins at
its recovery stroke. The two cilia synchronize within two
cycles. The mutual beat frequency is'31 Hz, to be com-
pared with'29 Hz, which is the beat frequency of a single
cilium. We found similar fast self-synchronization to occur
with different intercilia spacing in the range of 0.3 to 1.5
ciliary lengths.

In most realistic situations involving multicilia configu-
rations, the cilia have identical properties, as the case stud-

FIGURE 7 The dependence of the steady-state mutual beat frequency of
two adjacent cilia, on the distance between them. The vertical axis mea-
sures the ratio of the beat frequency of two neighboring cilia to that of a
single cilium after the steady state has been obtained in all cases. The
horizontal axis measures the nondimensional distance between the cilia.
The horizontal and the vertical axes are both on a logarithmic scale. The
vertical error bars represent the estimated errors in the calculated values,
and the dashed line is a least-squares fit to the functionA z xB with A 5
1.0829 andB 5 20.1368. The line is extrapolated back to the intercilia
spacing of 0.02, corresponding to two touching cilia. Explanation is given
in the text.

FIGURE 8 The autonomous evolution of synchronization between two
identical cilia starting att 5 0 at opposite phases (the left cilium starts the
recovery stroke and the right starts the effective stroke). Synchronization is
achieved within two cycles. The resulting steady-state beat frequency is
'31 Hz. The cilia spacing is 1, the 36 successive snapshots are separated
in time by 1 ms, and the units of the axes are nondimensional length. The
ellipse shown att 5 0 is the unit circle, appropriately distorted by different
scaling along the horizontal and the vertical axes.msec5 ms.
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ied above. However, it is also interesting to investigate
self-synchronization of two adjacent cilia having different
engines, as shown in Figs. 9 and 10. These cilia are spaced
by one cilium length apart, begin beating completely out of
phase, and differ from each other in their engine parameters
(veff and vrec; one cilium has a set of parameters as de-
scribed in Numerical Methods,veff andvrec of the second
cilium are doubled). If isolated and beating in water, the
beat frequency of the left cilium in Fig. 9 is'29 Hz and that
of the right cilium is'35 Hz. Their intrinsic beat patterns
are also different. Fig. 10 shows a configuration where the
positions of the cilia are switched. In both cases, the two
cilia change their original beat due to the interaction and end
up having two different beat patterns. Furthermore, the
beats shown in Figs. 9 and 10 are also different due to the
asymmetry in the positions of the cilia with respect to the
direction of the effective stroke. Nevertheless, we found that
in both cases the cilia match their (steady state) beat fre-
quency at the value of'32 Hz, which is the average of their
intrinsic beat frequencies.

The following comment, which relates to all figures that
display two cilia and multicilia configurations in this paper,
is important to avoid misinterpretation. Due to the intercilia
separation, the relevant range along the horizontal axis is

larger than the range along the vertical axis. Thus, when
plotting multicilia configurations, we must use different
scales for the axes. This may give the deceiving impression
that the length of the cilia varies, while in fact it always
remains 1 (in nondimensional units). To avoid misinterpre-
tation of lengths in such figures, we add the image of the
unit circle, centered at the anchor of the leftmost cilium.
This unit circle is of course distorted into an appropriate
ellipse and can be used for measuring distances on the plot.

Multicilia configurations

In nature, there may be thousands of cilia beating together,
propagating a microorganism through the viscous medium,
or moving fluid through a tube. One of the striking features
of ciliary motion is metachronal coordination. As men-
tioned above it has been speculated that the metachronism
phenomenon may be the result of hydrodynamical coupling.
We attempt to use our model to provide some support for
this conjecture.

Two-cilia and five-cilia configurations were used to study
the effect of cilia interactionand of increased viscosity. In
Table 3 we compare the beat frequencies of an isolated

FIGURE 9 Two cilia withdifferentengine parameters starting at oppo-
site phases att 5 0 (the left cilium starts the recovery stroke and the right
cilium starts the effective stroke). Explanation and parameters are detailed
in the text. The beat frequencies of the left and the right cilium, when
isolated and beating in water, are'29 Hz and'35 Hz, respectively. The
beat patterns of the two cilia remain different but they synchronize their
steady-state beat frequency at'32 Hz. The cilia spacing is 1, the 36
snapshots are separated in time by 1 ms, and the units of the axes are
nondimensional length. The ellipse shown att 5 0 is the unit circle,
appropriately distorted by different scaling along the horizontal and the
vertical axes.msec5 ms.

FIGURE 10 Two cilia withdifferent engine parameters starting at op-
posite phases att 5 0 (the left cilium starts the recovery stroke and the right
cilium starts the effective stroke). The cilia are the same as in Fig. 9, but
with switched positions. The beat frequencies of the left and the right
cilium, when isolated and beating in water, are'35 Hz and'29 Hz,
respectively. The beat patterns of the two cilia remain different but they
synchronize their steady-state beat frequency at'32 Hz. The cilia spacing
is 1, the 36 snapshots are separated in time by 1 ms, and the units of the
axes are nondimensional length. The ellipse shown att 5 0 is the unit
circle, appropriately distorted by different scaling along the horizontal and
the vertical axes.msec5 ms.
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cilium, of a two-cilia and a five-cilia configuration at three
different viscosities. The ciliary spacing is 0.6. The table
shows significant beat frequency changes in response to
increased viscosity in all cases. We also used the five-cilia
configuration to compare the effect of increased viscosity
with the experimental data of Machemer (1972). The results
are shown in Fig. 5. Note that the roughly linear dependence
on the logarithm of the viscosity persists. Furthermore, the
resulting line is shifted upward with respect to the line that
describes a single cilium and the results tend to approach
those reported by Machemer (1972). We did not repeat this
experiment with larger configurations due to the prohibitive
time that such simulations would take.

Figs. 11 and 12 show the beat cycles of a 10- and a
100-cilia configuration, respectively. The cilia spacing is
0.3, the successive snapshots are separated in time by 1 ms,
and the 24 snapshots cover (approximately) a complete beat
cycle. The displayed snapshots are taken after the cilia have
already reached their steady state, and the time indicatort 5
0 corresponds to the beginning of the fifth cycle rather than
the beginning of simulations, as in the figures that show two
cilia configurations. These figures demonstrate the autono-

mous occurrence of imperfect synchronization between the
cilia. The result resembles and has many (but not all)
characteristics of a metachronal wave. In both configura-
tions the steady-state beat frequency is'42 Hz (beat dura-
tion 24 ms).

The effective stroke in the 10-cilia configuration takes
place roughly fromt 5 0 to t 5 5 ms. To notice the phase
lags between the cilia, note that att 5 5 ms the leftmost
cilium is still at the end of its effective stroke, whereas the
other nine cilia have already started their recovery stroke.

FIGURE 11 Self-organized imperfect synchronization, resembling a
metachronal wave, in a row of 10 cilia. The snapshots are already at steady
state: the framet 5 0 is the beginning of the fifth cycle of the simulation.
The resulting steady-state beat frequency is'42 Hz, and the 24 snapshots
that are separated in time by 1 ms cover a complete beat cycle. The cilia
spacing is 0.3, and the units of the axes are nondimensional length. The
ellipse shown att 5 0 is the unit circle, appropriately distorted by different
scaling along the horizontal and the vertical axes.msec5 ms.

FIGURE 12 Self-organized imperfect synchronization, resembling a
metachronal wave, in a row of 100 cilia. The snapshots are already at
steady state: the framet 5 0 is the beginning of the fifth cycle of the
simulation. The resulting steady-state beat frequency is'42 Hz, and the 24
snapshots that are separated in time by 1 ms cover a complete beat cycle.
The cilia spacing is 0.3, and the units of the axes are nondimensional
length. The ellipse shown att 5 0 is the unit circle, appropriately distorted
by different scaling along the horizontal and the vertical axes.msec5 ms.
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The cilia have different beat patterns, according to their
position in the line.

The 100 cilia beat in an approximately antiplectic meta-
chronal wave, propagating from right to left (the direction of
the effective stroke is from left to right). This type of
antiplectic metachronism may occur with the cilia ofPar-
ameciumunder some conditions [see, for example, Ma-
chemer (1972)]. We point out that although Sleigh (1962)
originally suggested that the cilia ofParameciumbeat in an
antiplectic metachronal pattern, later work showed that it
was in fact dexioplectic [see Tamm (1972)]. To observe the
phase lags between the cilia, note that att 5 0 the rightmost
cilium already begins its effective stroke, whereas the other
cilia are still at the end of the previous recovery stroke.
Phase lags persist in the subsequent snapshots (e.g., att 5
1–4 ms). A roughly wavelike pattern, formed by the tips of
the cilia, propagating from the right to the left, can be seen
in the snapshots (e.g., att 5 6 ms, t 5 9 ms, t 5 15 ms).
Phase lags during the period of the “slow straightening back
to position” of the cilia toward the end of the cycle still
exist, although they are less easy to observe than during the
beginning of the cycle (mainly due to the scaling in the
figure).

Two-dimensional arrays of cilia beating in the
same plane

In nature large numbers of cilia are arranged in almost
parallel rows, such that the motion of adjacent cilia is
synchronized along one direction (often perpendicular to the
direction of the effective stroke), but out of phase along the
other. To model this setup we investigated two-dimensional
arrays of cilia, where the cilia beat out of phase in the
direction of thex axis and synchronously in the direction of
the z axis. In such configurations each cilium is influenced
by neighbors in the same row as well as by neighbors in the
same line. If the lines of the synchronized cilia are infinite,
and the cilia along these lines are equally spaced, the beat
remains planar and we can still use our two-dimensional
model. Liron and Mochon (1976) and later Liron (1996)
proposed an efficient approach to computing the flow due to
infinite lines of stokeslets in three-dimensional configura-
tions. The implementation to our case is straightforward.
Since the cilia along the line perpendicular to the plane of
beating are in phase, we need only to change the singular
kernels in the integral equation (Eq. 4) to account for the
velocity due to identical stokeslets distributed at constant
intervals on the line, and placed at the same height above the
surface. The full expressions are given in detail in Liron
(1996).

Fig. 4d displays the sideview of the beat cycle of a single
infinite line of synchronized cilia, to be compared with the
beat cycle of a single cilium in panela. The beat duration of
the infinite line of cilia is 30 ms (frequency is 33.3 Hz),
whereas the duration of a single two-dimensional cilium is
34 ms (frequency is 29.4 Hz). The beat pattern is also

different: the cilia in the line are more curved during the
effective stroke and less curved during the recovery stroke.
The angular spread of the cilia in the infinite line is smaller
than that of an isolated cilium. The upper panel of Fig. 13
displays a three-dimensional view of a semi-infinite array of
10 rows representing an infinite lines of cilia. The lower
panel shows the side view of this configuration at the same
time. The ciliary spacing is 1 along the lines and along the
rows. The resulting beat frequency is'42 Hz, and some
evidence for emerging phase lags can be observed. Proba-
bly, more rows are required to obtain a wavelike pattern
formed by the cilia tips, but we did not simulate such
configurations due to their prohibitive computational cost.

DISCUSSION

We have presented a general modeling framework for com-
puting the forces that produce an observed ciliary beat
pattern, and for fitting it into a simple plausible functional
form to generate a model ciliary engine. Our engine is what
we call a configuration-dependent engine, which is con-
trolled by two geometric switches activated at the end of the
effective and the recovery strokes. The modeling assump-
tion used here is that the engine does not change its prop-
erties in response to being slowed down by external load. A

FIGURE 13 A perspective view (upper panel) and a side view (lower
panel) of a semi-infinite array of cilia consisting of 10 rows, each one
representing an infinite line of synchronized cilia. The snapshot is already
at steady state and the beat frequency is'42 Hz. Small phase lags between
the cilia can be observed. The spacing in the rows and in the lines is 1. The
units of the axes are nondimensional length. The ellipse shown in the lower
panel is the unit circle, appropriately distorted by different scaling along
the horizontal and the vertical axes.
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different modeling approach which would perhaps yield
even a more realistic, speed-dependent engine, would in-
clude the property that dyneins generate more forces when
slowed down by a load. This is an important direction for
future studies.

Our model gives only a phenomenological description
based on the available data. We were able to obtain surpris-
ingly good fits to many quantitative features of the ciliary
beat without getting into the details of the internal structure
of the cilia. Introduction of realistic dynein-microtubule
interaction kinetics and signaling control systems into the
model is another important direction in which our modeling
framework should be extended in the future.

The equations we use fully account for the viscous inter-
actions between the cilia and the fluid in which they are
immersed and the boundary effects. This markedly im-
proves the accuracy and consistency of the model as com-
pared to earlier studies. The results obtained for one cilium
closely resemble the responses to changed viscosity and to
externally imposed flow observed, e.g., by Sleigh (1962,
1968); Gray (1928); Okuno and Hiramoto (1976); Eshel and
Gibbons (1989) and others. This demonstrates that our
model engine together with the GL hydrodynamical equa-
tions capture the essential features of the problem.

With multicilia configurations, we obtained self-synchro-
nization between two adjacent cilia. Also, the response of a
single cilium to external flow fits experimental results
(Gray, 1928; Okuno and Hiramoto, 1976). The results we
obtained from rows of cilia and semi-infinite two-dimen-
sional arrays of cilia indicate that metachronal-like patterns
can evolve autonomously due to the hydrodynamic interac-
tion between the cilia. This provides support for the con-
jecture that metachronism can, at least partially, be ex-
plained as the result of hydrodynamic coupling. Because the
hydrodynamic treatment used here fully accounts for the
viscous and boundary effects, and is suitable for numerical
computation, a number of problems that have hitherto not
been approachable are now ready to be investigated:

1. The present model demonstrates that an antiplectic meta-
chronal wave can occur as the result of hydrodynamic
interactions between neighboring cilia. Symplectic, dex-
ioplectic, and laevoplectic metachronism also occur in
nature. Such behavior could result, in principle, from an
initial deformation caused by viscous interaction with
adjacent cilia, which then triggers the dynein-microtu-
bule interaction to occur in a particular direction. Work

is now underway to obtain an engine and switching
paradigm that would allow metachronism in any direc-
tion to evolve autonomously.

2. Our reconstruction of forces that led to the proposed
model engine was based on observed beats of a suppos-
edly single cilium. However, in most experiments, in-
cluding the one whose results we used, the cilia are not
isolated. Therefore, the observed beats are already the
overall result of the ciliary interactions. Taking this into
account while building the model for the internal engine
would require more sophisticated mathematical tech-
niques. Alternatively, we plan to apply our method to
data extracted from beats of isolated cilia. Such data will
hopefully be available in the near future (Z. Priel, per-
sonal communication).

3. In nature, cilia beat in three-dimensional patterns. To
reach efficient functioning, the cilia are packed densely,
and should be able to move freely throughout the beat
phase. This is achieved by having the cilia return to their
“start position” out of the plane of the effective stroke,
thus creating 3-d motions, and by staggering the beat of
adjacent cilia creating a metachronal wave. Gueron and
Liron (1993) developed the necessary equations for
modeling 3-d ciliary motion. These equations enable the
propagation in time of the curvature and the torsion
along a 3-d curve, given its velocity distribution. How-
ever, modeling the 3-d problem in a realistic multicilia
configuration is still a formidable task. Applying our
techniques and reconstructing a ciliary engine that would
give a 3-d motion and possible diaplectic metachronism
is a future goal.

APPENDIX

Numerical methods

For the convenience of the reader, we provide here all the details of the
involved computations required for the simulations. By using this descrip-
tion the results reported in the paper can be reproduced.

We useN 1 1 discretization points along the cilium, with discretization
interval ds 5 1/N. Equations 2 are integral equations with the unknowns
fN andfT. We solve these equations by an iterative method and use the
stopping criterion

ifT
(k11) 2 fT

(k)i` , e and ifN
(k11) 2 fN

(k)i` , e.

We usee 5 1024 in our calculations.
After the drag force is computed, the values of the shear force [FT(s, t),

FN(s, t)] can be obtained from Eqs. 6. Equations 6, 13, and 15 yield a linear
system of the formAx 5 b of 2N 1 2 unknowns, where
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A 5 3
21 1 0 0 0 · · · 0 0 0 0 0 0 · · · 0
21 0 1 0 0 · · · 0 0 a0 2 a2 0 0 0 · · · 0
0 21 0 1 0 · · · 0 0 0 a1 2 a3 0 0 · · · 0
0 0 21 0 1 · · · 0 0 0 0 a2 2 a4 0 · · · 0
···

···
···

···
···

···
···

0 0 0 0 0 · · · 1 0 0 0 0 0 · · · 0
0 0 0 0 0 · · · 0 21 1 0 0 0 · · · 0
0 a2 2 a0 0 0 0 · · · 0 21 0 1 0 0 · · · 0
0 0 a3 2 a1 0 0 · · · 0 0 21 0 1 0 · · · 0
0 0 0 a4 2 a2 0 · · · 0 0 0 21 0 1 · · · 0
···

···
···

···
···

···
···

0 0 0 0 0 · · · 0 0 0 0 0 0 · · · 1

4 (A1)

and

xT 5 @FT0, FT1, FT2, . . . ,FTNuFN0, FN1, FN2, . . . ,FNN,#,
(A2)

bT 5 @0, 2dsfT1, 2dsfT2, . . . , 0u0, 2dsfN1, 2dsfN2, . . . , 0#.

HereFTi
, FNi

, fTi
, fNi

(i 5 0 . . . N) represent values at the discretization
points.

The solution of this system gives the values ofFT and FN at the
discretization points. The values of the active shear force at these points are
approximated to orderO(ds2) by

Si 5 FNi 2 Eb z
~ai11 2 2ai 1 ai21!

ds2 ,

i 5 0, 1, . . . ,N.
(A3)

If the shape of the ciliuma(s, t) is given at timet, and the active shear
force S(s, t) is known, FN(s, t) can be obtained from Eq. 11, and then
FT(s, t) can be obtained from Eq. 9. Equation 6 gives the value of the drag
force [fT(s, t), fN(s, t)]. Using these values in Eq. 4 gives the value of
gT(s, t) andgN(s, t). We perform this process iteratively until the stopping
criteria are satisfied. Equation 9 is a second-order ordinary equation forFT.
The above discretization reduces it to a linear system of the formAx 5 b
with N 1 1 equations, where

A 5 3
21 1 0 0 · · · 0
1 22 1 D2 1 0 · · · 0
0 1 22 1 D3 1 · · · 0
···

···
···

···
···

0 · · · 0 1 22 1 DN21 1
0 · · · 0 0 0 1

4
(A4)

xT 5 @FT0, FT1, FT2, . . . ,FTN21, FTN#, (A5)

bT 5 @0, RHS1, RHS2, . . . , RHSN21, 0#,

and, for i 5 1 . . . N 2 1,

Di 5 2
1

4
z
CT

CN
z ~ai11 2 ai21!

2, (A6)

RHSi 5
1

4S1 1
CT

CN
D z ~FNi11 2 FNi21! z ~ai11 2 ai21!

1 FNi z ~ai11 2 2ai 1 ai21!

2
ds

2
z
CT

CN
z gNi z ~ai11 2 ai21!

1
ds

2
z ~gTi11 2 gTi21!, (A7)

Finally, a(s, t) is propagated in time by solving Eq. 10, which is a
nonlinear PDE fora with a fourth-order space derivative. We solve it by
the Crank-Nicolson method, that is, calculating the value ofa at the time
t 1 (dt/2), and repeating the above process until stopping criterion is
satisfied. The discretization reduces Eq. 10 to a linear systemAx 5 b with
N 1 1 equations, where:

A 5 3
21 1 0 0 0 0 · · · 0
21 3 23 1 0 0 · · · 0
L22 L12 D2 U12 U22 0 · · · 0
0 L23 L13 D3 U13 U23 · · · 0
···

···
···

···
···

···
0 · · · 0 L2N22 L1N22 DN22 U1N22 U2N22

0 · · · 0 0 0 1 22 1
0 · · · 0 0 0 0 21 1

4
(A8)

xT 5 @a0, a1, a2, a3, . . . ,aN22, aN21, aN#,

bT 5 F0, 2ds2 z
S0L

2

Eb
z ~S1 2 S0!,

RHS2, RHS3, . . . , RHSN22, 0, 0], (A9)

and, for i 5 3, 4, . . . ,N 2 2.

L2i 5 U2i 5
Eb

S0L
2, (A10)

L1i 5 24 z
Eb

S0L
2 2

ds2

4
z S1 1

CN

CT
D z ~FTi11 2 FTi21! 1 ds2 z FTi

2
1

4
z
CN

CT
z

Eb

S0L
2 z ~ai11 2 ai21!

2 1
ds3

2
z
CN

CT
z gTi ,

Di 5 6 z
Eb

S0L
2 2 2 z ds2 z FTi 1 2 z

ds4

dt
z
CNwL2

S0

1 2 z
CN

CT
z

Eb

S0L
2 z ~ai11 2 ai21!

2 (A11)
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U1i 5 24 z
Eb

S0L
2 1

ds2

4
z S1 1

CN

CT
D z ~FTi11 2 FTi21! 1 ds2FTi

2
1

4
z
CN

CT
z

Eb

S0L
2 z ~ai11 2 ai21!

2 2
ds3

2
z
CN

CT
z gTi ,

RHSi 5 2 z
ds4

dt
z
CNwL2

S0
z ai~t!

1
ds2

4
z
CN

CT
z Si z ~ai11 2 ai21!

2

1
ds3

2
z ~gNi11 2 gNi21! 2 ds2 z ~Si11 2 2Si 1 Si21!,

After the values ofa(s, t) anda[s, t 1 (dt/2)] are computed, we obtain the
value ofa(s, t 1 dt) by

a~s, t 1 dt! < 2 z aSs, t 1
dt

2D 2 a~s, t! 1 O~dt!.

Finally, note that for clarity the calculation procedure is displayed as a flow
chart in Fig. 1. Similarly to the result reported by Hines and Blum (1978)
and by Gueron and Liron (1992) we found that the stopping criterion is
satisfied already after five iterations.

The complexity of the simulation algorithm isO(P2N2) whereP is the
number of the simulated cilia andN is the number of discretization points
along each cilium. Hence, simulations of large multicilia configurations are
a heavy computational task. Although modern computer technology en-
ables us to run simulations of large multicilia arrays, practical limitations
still exist. For example, the simulation of a 100-cilia configuration for 5
cycles (1200 time steps) takes;400 CPU hours. All calculations and
simulations reported in with work were performed on SUN SPARC 10
workstation.
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